skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McCluskey, Christina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This dataset originates from a new CESM2 CAM6 perturbed parameter ensemble (PPE) designed to explore climate and hydroclimate dynamics under a wide range of sea surface temperature (SST) conditions. The SST varies from 4 degrees Celsius colder to 16 degrees Celsius warmer than preindustrial levels, encompassing a broad spectrum of mean temperatures spanning the past 65 million years. This dataset offers valuable insights into climate and hydroclimate responses, as well as weather and climate extremes under diverse conditions.The dataset includes results from nine PPE simulations with different SST scenarios: preindustrial (PREI), 4K cooler (M04K), and 4K, 8K, 12K, and 16K warmer (P04K to P16K). For SSTs exceeding 8K warming, sea ice was removed to improve numerical stability. Each PPE set consists of 250 ensemble members, with 45 parameters related to microphysics, convection, turbulence, and aerosols perturbed using Latin Hypercube Sampling. An additional simulation with default parameter settings brings the total to 251 simulations, each running for five years using CAM6.3 (https://github.com/ESCOMP/CAM/tree/cam6_3_026; with additional paleo modifications).Post-processing converted the data into compressed NetCDF-4 format. All 251 runs were concatenated using ncecat to minimize the number of files. For example, the following file contains monthly surface temperature data from the preindustrial PPE: f.c6.F1850.f19_f19.paleo_ppe.sst_prei.ens251/atm/proc/tseries/month_1/f.c6.F1850.f19_f19.paleo_ppe.sst_prei.ens251.cam.h0.TS.000101-000512.ncA detailed variable list [https://rda.ucar.edu/OS/web/datasets/d651038/docs/detailed_vars.txt] can be found in the Documentation Tab.Parameter values are provided in the PPE Parameter File. More details can be found in the paper: Zhu et al. (2025). Investigating the State Dependence of Cloud Feedback Using a Suite of Perturbed Parameter Ensembles, Journal of Climate. 
    more » « less
  2. Abstract Supercooled liquid clouds are ubiquitous over the Southern Ocean (SO), even to temperatures below −20°C, and comprise a large fraction of the marine boundary layer (MBL) clouds. Earth system models and reanalysis products have struggled to reproduce the observed cloud phase distribution and occurrence of cloud ice in the region. Recent simulations found the microphysical representation of ice nucleation and growth has a large impact on these properties, however, measurements of SO ice nucleating particles (INPs) to validate simulations are sparse. This study presents measurements of INPs from simultaneous aircraft and ship campaigns conducted over the SO in austral summer 2018, which include the first in situ observations in and above cloud in the region. Our results confirm recent observations that INP concentrations are uniformly lower than measurements made in the late 1960s. While INP concentrations below and above cloud are similar, higher ice nucleation efficiency above cloud supports model simulations that the dominant INP composition varies with height. Model parameterizations based solely on aerosol properties capture the mean relationship between INP concentration and temperature but not the observed variability, which is likely related to the only modest correlations observed between INPs and environmental or aerosol metrics. Including wind speed in addition to activation temperature in a marine INP parameterization reduces bias but does not explain the large range of observed INP concentrations. Direct and indirect inference of marine INP size suggests MBL INPs, at least during Austral summer, are dominated by particles with diameters smaller than 500 nm. 
    more » « less
  3. Oceans emit ice-nucleating particles (INPs) which freeze supercooled cloud droplets, modifying clouds. We added dead biomass of three phytoplankton to seawater. Each time, this stimulated INP production in the water and INP emissions in sea spray. 
    more » « less
  4. Abstract Convective clouds play an important role in the Earth’s climate system and are a known source of extreme weather. Gaps in our understanding of convective vertical motions, microphysics, and precipitation across a full range of aerosol and meteorological regimes continue to limit our ability to predict the occurrence and intensity of these cloud systems. Towards improving predictability, the National Science Foundation (NSF) sponsored a large field experiment entitled “Experiment of Sea Breeze Convection, Aerosols, Precipitation, and Environment (ESCAPE).” ESCAPE took place between 30 May - 30 Sept. 2022 in the vicinity of Houston, TX because this area frequently experiences isolated deep convection that interacts with the region's mesoscale circulations and its range of aerosol conditions. ESCAPE focused on collecting observations of isolated deep convection through innovative sampling, and on developing novel analysis techniques. This included the deployment of two research aircraft, the National Research Council of Canada Convair-580 and the Stratton Park Engineering Company Learjet, which combined conducted 24 research flights from 30 May to 17 June. On the ground, three mobile X-band radars, and one mobile Doppler lidar truck equipped with soundings, were deployed from 30 May to 28 June. From 1 August to 30 Sept. 2022, a dual-polarization C-band radar was deployed and operated using a novel, multi-sensor agile adaptive sampling strategy to track the entire lifecycle of isolated convective clouds. Analysis of the ESCAPE observations has already yielded preliminary findings on how aerosols and environmental conditions impact the convective life cycle. 
    more » « less
  5. null (Ed.)
    Abstract. Ambient concentrations of ice-forming particles measured during ship expeditions are collected and summarised with the aim of determining the spatial distribution and variability in ice nuclei in oceanic regions.The presented data from literature and previously unpublished data from over 23 months of ship-based measurements stretch from the Arctic to the Southern Ocean and include a circumnavigation of Antarctica. In comparison to continental observations, ship-based measurements of ambient ice nuclei show 1 to 2 orders of magnitude lower mean concentrations. To quantify the geographical variability in oceanic areas, the concentration range of potential ice nuclei in different climate zones is analysed by meridionally dividing the expedition tracks into tropical, temperate and polar climate zones. We find that concentrations of ice nuclei in these meridional zones follow temperature spectra with similar slopes but vary in absolute concentration. Typically, the frequency with which specific concentrations of ice nuclei are observed at a certain temperature follows a log-normal distribution. A consequence of the log-normal distribution is that the mean concentration is higher than the most frequently measured concentration. Finally, the potential contribution of ship exhaust to the measured ice nuclei concentration on board research vessels is analysed as function of temperature. We find a sharp onset of the influence at approximately −36 ∘C but none at warmer temperatures that could bias ship-based measurements. 
    more » « less
  6. Heterogeneous ice nucleation in the atmosphere regulates cloud properties, such as phase (ice versus liquid) and lifetime. Aerosol particles of marine origin are relevant ice nucleating particle sources when marine aerosol layers are lifted over mountainous terrain and in higher latitude ocean boundary layers, distant from terrestrial aerosol sources. Among many particle compositions associated with ice nucleation by sea spray aerosols are highly saturated fatty acids. Previous studies have not demonstrated their ability to freeze dilute water droplets. This study investigates ice nucleation by monolayers at the surface of supercooled droplets and as crystalline particles at temperatures exceeding the threshold for homogeneous freezing. Results show the poor efficiency of long chain fatty acid (C16, C18) monolayers in templating freezing of pure water droplets and seawater subphase to temperatures of at least −30 °C, consistent with theory. This contrasts with freezing of fatty alcohols (C22 used here) at nearly 20 °C warmer. Evaporation of μL-sized droplets to promote structural compression of a C19 acid monolayer did not favor warmer ice formation of drops. Heterogeneous ice nucleation occurred for nL-sized droplets condensed on 5 to 100 μm crystalline particles of fatty acid (C12 to C20) at a range of temperatures below −28 °C. These experiments suggest that fatty acids nucleate ice at warmer than −36 °C only when the crystalline phase is present. Rough estimates of ice active site densities are consistent with those of marine aerosols, but require knowledge of the proportion of surface area comprised of fatty acids for application. 
    more » « less
  7. Abstract Recent studies have suggested a correct representation of cloud phase in the Southern Ocean region is important in climate models for an accurate representation of the energy balance. Satellite retrievals indicate many of the clouds are predominantly liquid, despite their low temperatures. However, clouds containing high numbers of ice crystals have sometimes been observed in this region and implicated the secondary ice production process called rime splintering. This study re‐examines rime splintering in Southern Ocean cumuli using both a new data set and high‐resolution numerical modeling. Measurements acquired during the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES) provide an evaluation of the amount of ice in shallow cumuli sampled over two days in this region. The measurements sometimes exhibit seven orders of magnitude or more ice particles compared to amounts expected from measurements of ice‐nucleating particles (INP) on the same days. Cumuli containing multiple updrafts had the greatest tendency to contain high ice concentrations and meet the expected conditions for rime splintering. Idealized numerical modeling, constrained by the observations, suggests that the multiple updrafts produce more frozen raindrops/graupel, and allow them to travel through the rime‐splintering zone over an extended period of time, increasing the number of ice particles by many orders of magnitude. The extremely low number of INP in the Southern Ocean thus appears to require special conditions like multiple updrafts to help glaciate the cumuli in this region, potentially explaining the predominance of supercooled cumuli observed there. 
    more » « less
  8. null (Ed.)
    Abstract Weather and climate models are challenged by uncertainties and biases in simulating Southern Ocean (SO) radiative fluxes that trace to a poor understanding of cloud, aerosol, precipitation and radiative processes, and their interactions. Projects between 2016 and 2018 used in-situ probes, radar, lidar and other instruments to make comprehensive measurements of thermodynamics, surface radiation, cloud, precipitation, aerosol, cloud condensation nuclei (CCN) and ice nucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase cloudsnucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase clouds common to this pristine environment. Data including soundings were collected from the NSF/NCAR G-V aircraft flying north-south gradients south of Tasmania, at Macquarie Island, and on the RV Investigator and RSV Aurora Australis. Synergistically these data characterize boundary layer and free troposphere environmental properties, and represent the most comprehensive data of this type available south of the oceanic polar front, in the cold sector of SO cyclones, and across seasons. Results show a largely pristine environments with numerous small and few large aerosols above cloud, suggesting new particle formation and limited long-range transport from continents, high variability in CCN and cloud droplet concentrations, and ubiquitous supercooled water in thin, multi-layered clouds, often with small-scale generating cells near cloud top. These observations demonstrate how cloud properties depend on aerosols while highlighting the importance of confirmed low clouds were responsible for radiation biases. The combination of models and observations is examining how aerosols and meteorology couple to control SO water and energy budgets. 
    more » « less
  9. Abstract Maritime boundary‐layer clouds over the Southern Ocean (SO) have a large shortwave radiative effect. Yet, climate models have difficulties in representing these clouds and, especially, their phase in this observationally sparse region. This study aims to increase the knowledge of SO cloud phase by presenting in‐situ cloud microphysical observations from the Southern Ocean Clouds, Radiation, Aerosol, Transport Experimental Study (SOCRATES). We investigate the occurrence of ice in summertime marine stratocumulus and cumulus clouds in the temperature range between 6 and −25°C. Our observations show that in ice‐containing clouds, maximum ice number concentrations of up to several hundreds per liter were found. The observed ice crystal concentrations were on average one to two orders of magnitude higher than the simultaneously measured ice nucleating particle (INP) concentrations in the temperature range below −10°C and up to five orders of magnitude higher than estimated INP concentrations in the temperature range above −10°C. These results highlight the importance of secondary ice production (SIP) in SO summertime marine boundary‐layer clouds. Evidence for rime splintering was found in the Hallett‐Mossop (HM) temperature range but the exact SIP mechanism active at lower temperatures remains unclear. Finally, instrument simulators were used to assess simulated co‐located cloud ice concentrations and the role of modeled HM rime‐splintering. We found that CAM6 is deficient in simulating number concentrations across the HM temperature range with little sensitivity to the model HM process, which is inconsistent with the aforementioned observational evidence of highly active SIP processes in SO low‐level clouds. 
    more » « less